
reiter
Release 0.8.0

Andrei Lapets

May 27, 2023

CONTENTS

1 Installation and Usage 3
1.1 Examples . 3

2 Development 5
2.1 Documentation . 5
2.2 Testing and Conventions . 5
2.3 Contributions . 6
2.4 Versioning . 6
2.5 Publishing . 6

2.5.1 reiter module . 6

Python Module Index 11

Index 13

i

ii

reiter, Release 0.8.0

Wrapper for Python iterators and iterables that implements a list-like random-access interface by caching retrieved
items for later reuse.

CONTENTS 1

https://badge.fury.io/py/reiter
https://reiter.readthedocs.io/en/latest/?badge=latest
https://github.com/lapets/reiter/actions/workflows/lint-test-cover-docs.yml
https://coveralls.io/github/lapets/reiter?branch=main

reiter, Release 0.8.0

2 CONTENTS

CHAPTER

ONE

INSTALLATION AND USAGE

This library is available as a package on PyPI:

python -m pip install reiter

The library can be imported in the usual way:

import reiter
from reiter import reiter

1.1 Examples

This library makes it possible to wrap any iterator or iterable object within an interface that enables repeated iteration
over – and random access by index of – the items contained within that object. A reiter instance yields the same
sequence of items as the wrapped iterator or iterable:

>>> from reiter import reiter
>>> xs = iter([1, 2, 3])
>>> ys = reiter(xs)
>>> list(ys)
[1, 2, 3]

Unlike iterators and some iterable objects (including those that are built-in and those that are user-defined), an instance
of the reiter class always allows iteration over its items any number of times. More specifically, every invocation of
iter (explicit or implicit) returns an iterator that begins iteration from the first item found in the originally wrapped
iterator or iterable:

>>> list(iter(ys)), list(iter(ys))
([1, 2, 3], [1, 2, 3])
>>> list(ys), list(ys)
([1, 2, 3], [1, 2, 3])

Furthermore, it is also possible to access elements by their index:

>>> xs = iter([1, 2, 3])
>>> ys = reiter(xs)
>>> ys[0], ys[1], ys[2]
(1, 2, 3)

The built-in Python next function is also supported, and any attempt to retrieve an item once the sequence of items is
exhausted raises the StopIteration exception in the usual manner:

3

https://pypi.org/project/reiter
https://docs.python.org/3/glossary.html#term-iterator
https://docs.python.org/3/glossary.html#term-iterable
https://reiter.readthedocs.io/en/0.8.0/_source/reiter.html#reiter.reiter.reiter
https://reiter.readthedocs.io/en/0.8.0/_source/reiter.html#reiter.reiter.reiter
https://docs.python.org/3/library/functions.html#iter
https://docs.python.org/3/library/functions.html#next
https://docs.python.org/3/library/exceptions.html#StopIteration

reiter, Release 0.8.0

>>> xs = reiter(iter([1, 2, 3]))
>>> next(xs), next(xs), next(xs)
(1, 2, 3)
>>> next(xs)
Traceback (most recent call last):
...

StopIteration

However, all items yielded during iteration can be accessed by their index, and it is also possible to iterate over those
items again:

>>> xs[0], xs[1], xs[2]
(1, 2, 3)
>>> [x for x in xs]
[1, 2, 3]

Retrieval of yielded items using slice notation is also supported via the __getitem__ method:

>>> xs = reiter(iter([1, 2, 3]))
>>> xs[0:2]
[1, 2]

Instances of reiter support additional inspection methods, as well. For example, the has method returns a boolean
value indicating whether a next item is available and the length method returns the length of the sequence of items
emitted by the instance (once no more items can be emitted):

>>> xs = reiter(iter([1, 2, 3]))
>>> xs.has(), xs.has(), xs.has(), xs.has()
(True, True, True, False)
>>> xs.length()
3

4 Chapter 1. Installation and Usage

https://reiter.readthedocs.io/en/0.8.0/_source/reiter.html#reiter.reiter.reiter.__getitem__
https://reiter.readthedocs.io/en/0.8.0/_source/reiter.html#reiter.reiter.reiter
https://reiter.readthedocs.io/en/0.8.0/_source/reiter.html#reiter.reiter.reiter.has
https://reiter.readthedocs.io/en/0.8.0/_source/reiter.html#reiter.reiter.reiter.length

CHAPTER

TWO

DEVELOPMENT

All installation and development dependencies are fully specified in pyproject.toml. The project.
optional-dependencies object is used to specify optional requirements for various development tasks. This makes
it possible to specify additional options (such as docs, lint, and so on) when performing installation using pip:

python -m pip install .[docs,lint]

2.1 Documentation

The documentation can be generated automatically from the source files using Sphinx:

python -m pip install .[docs]
cd docs
sphinx-apidoc -f -E --templatedir=_templates -o _source .. && make html

2.2 Testing and Conventions

All unit tests are executed and their coverage is measured when using pytest (see the pyproject.toml file for config-
uration details):

python -m pip install .[test]
python -m pytest

Alternatively, all unit tests are included in the module itself and can be executed using doctest:

python src/reiter/reiter.py -v

Style conventions are enforced using Pylint:

python -m pip install .[lint]
python -m pylint src/reiter

5

https://peps.python.org/pep-0621
https://pypi.org/project/pip
https://www.sphinx-doc.org
https://docs.pytest.org
https://docs.python.org/3/library/doctest.html
https://pylint.readthedocs.io

reiter, Release 0.8.0

2.3 Contributions

In order to contribute to the source code, open an issue or submit a pull request on the GitHub page for this library.

2.4 Versioning

The version number format for this library and the changes to the library associated with version number increments
conform with Semantic Versioning 2.0.0.

2.5 Publishing

This library can be published as a package on PyPI by a package maintainer. First, install the dependencies required
for packaging and publishing:

python -m pip install .[publish]

Ensure that the correct version number appears in pyproject.toml, and that any links in this README document to
the Read the Docs documentation of this package (or its dependencies) have appropriate version numbers. Also ensure
that the Read the Docs project for this library has an automation rule that activates and sets as the default all tagged
versions. Create and push a tag for this version (replacing ?.?.? with the version number):

git tag ?.?.?
git push origin ?.?.?

Remove any old build/distribution files. Then, package the source into a distribution archive:

rm -rf build dist src/*.egg-info
python -m build --sdist --wheel .

Finally, upload the package distribution archive to PyPI:

python -m twine upload dist/*

2.5.1 reiter module

Wrapper for Python iterators and iterables that implements a list-like random-access interface by caching retrieved
items for later reuse.

class reiter.reiter.reiter(iterable: Iterable)
Bases: collections.abc.Iterator, collections.abc.Iterable

Wrapper class for iterators and iterables that provides an interface enabling repeated iteration and random access
by index of the sequence of items contained within.

static __new__(cls, iterable: Iterable)
Constructor that wraps an iterator or iterable. An instance of this class yields the same sequence of items
as the wrapped object.

6 Chapter 2. Development

https://github.com/lapets/reiter
https://semver.org/#semantic-versioning-200
https://pypi.org/project/reiter
https://docs.readthedocs.io/en/stable/automation-rules.html
https://pypi.org
https://docs.python.org/3/library/collections.abc.html#collections.abc.Iterator
https://docs.python.org/3/library/collections.abc.html#collections.abc.Iterable
https://docs.python.org/3/glossary.html#term-iterator
https://docs.python.org/3/glossary.html#term-iterable

reiter, Release 0.8.0

>>> xs = iter([1, 2, 3])
>>> ys = reiter(xs)
>>> list(ys)
[1, 2, 3]

Unlike iterators and some iterable objects (including those that are built-in and those that are user-defined),
an instance of this class always allows iteration over its items any number of times.

>>> list(ys), list(ys)
([1, 2, 3], [1, 2, 3])

Furthermore, it is also possible to access elements using their index.

>>> xs = iter([1, 2, 3])
>>> ys = reiter(xs)
>>> ys[0], ys[1], ys[2]
(1, 2, 3)

An instance of this class can be constructed from another instance of this class.

>>> list(reiter(reiter(iter([1, 2, 3]))))
[1, 2, 3]

The type of an instance of this class can be checked in the usual manner, and an instance of this class cannot
be constructed from a value or object that is not an iterator or iterable.

>>> isinstance(reiter(xs), reiter)
True
>>> reiter(123)
Traceback (most recent call last):
...

TypeError: supplied object is not iterable

__next__()→ Any
Substitute definition of the corresponding method for iterators that also caches the retrieved item before
returning it.

>>> xs = reiter(iter([1, 2, 3]))
>>> next(xs), next(xs), next(xs)
(1, 2, 3)

Any attempt to retrieve items once the sequence of items is exhausted raises an exception in the usual
manner.

>>> next(xs)
Traceback (most recent call last):
...

StopIteration

However, all items yielded during iteration can be accessed by their index, and it is also possible to iterate
over them again.

>>> xs[0], xs[1], xs[2]
(1, 2, 3)

(continues on next page)

2.5. Publishing 7

reiter, Release 0.8.0

(continued from previous page)

>>> [x for x in xs]
[1, 2, 3]
>>> [x for x in xs], [x for x in xs]
([1, 2, 3], [1, 2, 3])

__getitem__(index: Union[int, slice])→ Any
Returns the item at the supplied index or the items within the range of the supplied slice, retrieving additional
items from the iterator (and caching them) as necessary.

>>> xs = reiter(iter([1, 2, 3]))
>>> xs[2]
3
>>> xs[1]
2
>>> xs = reiter(range(10))
>>> xs[0]
0
>>> xs = reiter(range(10))
>>> xs[10]
Traceback (most recent call last):
...

IndexError: index out of range
>>> xs['abc']
Traceback (most recent call last):
...

ValueError: index must be integer or slice

Use of slice notation is supported, but it should be used carefully. Omitting a lower or upper bound may
require retrieving (and caching) all items.

>>> xs = reiter(iter([1, 2, 3]))
>>> xs[0:2]
[1, 2]
>>> xs = reiter(iter([1, 2, 3]))
>>> xs[:2]
[1, 2]
>>> xs = reiter(iter([1, 2, 3]))
>>> xs[0:]
[1, 2, 3]
>>> xs = reiter(iter([1, 2, 3]))
>>> xs[:]
[1, 2, 3]
>>> xs = reiter(iter([1, 2, 3]))
>>> xs[2:0:-1]
[3, 2]
>>> xs = reiter(iter([1, 2, 3]))
>>> xs[2::-1]
[3, 2, 1]
>>> xs = reiter(iter([1, 2, 3]))
>>> xs[::-1]
[3, 2, 1]
>>> xs = reiter(iter([1, 2, 3]))

(continues on next page)

8 Chapter 2. Development

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#slice

reiter, Release 0.8.0

(continued from previous page)

>>> xs[:0:-1]
[3, 2]

__iter__()→ Iterable
Builds a new iterator that begins at the first cached element and continues from there. This method is an
effective way to “reset” the instance of this class so that the built-in next function can be used again.

>>> xs = reiter(iter([1, 2, 3]))
>>> next(xs)
1
>>> next(xs)
2
>>> next(xs)
3
>>> next(xs)
Traceback (most recent call last):
...

StopIteration
>>> xs = iter(xs)
>>> next(xs), next(xs), next(xs)
(1, 2, 3)

has(index: Optional[int] = None)→ bool
Returns a boolean indicating whether a next item is available, or if an item exists at the specified index.

>>> xs = reiter(iter([1, 2, 3]))
>>> xs.has(), xs.has(), xs.has(), xs.has()
(True, True, True, False)

If an explicit index is supplied, a boolean value is returned indicating whether an item exists at that position
in the sequence within the wrapped iterator or iterable.

>>> xs.has(2)
True
>>> xs = reiter(iter([1, 2, 3]))
>>> xs.has(2)
True
>>> xs.has(3)
False

length()→ Optional[int]
Returns the length of this instance, if all items have been retrieved. If not all items have been retrieved,
None is returned.

>>> xs = reiter(iter([1, 2, 3]))
>>> xs.length() is None
True
>>> next(xs)
1
>>> xs.length() is None
True
>>> next(xs), next(xs)
(2, 3)

(continues on next page)

2.5. Publishing 9

https://docs.python.org/3/library/functions.html#next
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int

reiter, Release 0.8.0

(continued from previous page)

>>> next(xs)
Traceback (most recent call last):
...

StopIteration
>>> xs.length()
3

Invoking the has method until the instance is exhausted is sufficient to ensure that all items have been
retrieved.

>>> xs = reiter(iter([1, 2, 3]))
>>> xs.has(), xs.has(), xs.has(), xs.has()
(True, True, True, False)
>>> xs.length()
3

10 Chapter 2. Development

PYTHON MODULE INDEX

r
reiter.reiter, 6

11

reiter, Release 0.8.0

12 Python Module Index

INDEX

Symbols
__getitem__() (reiter.reiter.reiter method), 8
__iter__() (reiter.reiter.reiter method), 9
__new__() (reiter.reiter.reiter static method), 6
__next__() (reiter.reiter.reiter method), 7

H
has() (reiter.reiter.reiter method), 9

L
length() (reiter.reiter.reiter method), 9

M
module

reiter.reiter, 6

R
reiter (class in reiter.reiter), 6
reiter.reiter
module, 6

13

	Installation and Usage
	Examples

	Development
	Documentation
	Testing and Conventions
	Contributions
	Versioning
	Publishing
	reiter module

	Python Module Index
	Index

